

MEMPPS Micro-Electromechanical Planetary Probes

D.J. McComas, S.A. Cerwin, F. Crary, J. Helffrich, J. Mitchell, D.L. Strickland, P.W. Valek Southwest Research Institute

San Antonio, Texas USA

Introduction

- Study describes the basic principles of Micro-Electromechanical Systems (MEMS) as basis for Micro-Electro-Mechanical Planetary Probes (MEMPPs)
- Technology applicable to broad array of planetary atmospheric and surface probes within very small packages and limited resources
- Focused observations in contrast to sophisticated assemblages of experiments and supporting systems
- MEMPPs provide several significant advantages
 - Integrated packages of intrinsically mechanically robust instrumentation and subsystems
 - Much smaller size, mass, and power requirements
 - May enable large numbers of distributed probes

Outline

- What are MEMS?
- Environmental Considerations and Testing
- Applicability for Planetary Probes
- Conclusions

What are MEMS?

Micro-Electromechanical Systems

Micro-scale Mechanical Systems

Images in this presentation courtesy Southwest Research Institute and Sandia National Laboratories.

- Example: Two orthogonal linear drives linked to a rotary gear
 - > 350,000 RPM
 - Lifetime >7x10⁹ revolutions w/ millions of start/stop cycles

How MEMS are built

- Micrometer scale machines built using same technology developed in the semiconductor industry
 - Surface processes using photolithography, plating, etching and electromechanical planarization
 - Release from substrate w/o "stiction"
- Other processes: Deep Etches, LIGA, etc. also used

Electrostatic Actuation: Comb Drives

Environmental Considerations and Testing

MEMS work and can be easily tested over very broad ranges of conditions

Micro-Probe Test Station

- Apply electrical signals
- Support optical elements
- Manipulate MEMS devices
- Operational imaging

SwRI MEMS Vacuum Micro-Probe Facility

Aviation Week 2003 Technology Innovation Award

Example: Simple Oscillators

- Extremely sensitive to pressure (Q)
- Addition of specific absorbers measures constituents: f~(k/m)^{1/2}

Long Lifetimes Even in Vacuum

- "Barn Door" device
 - High force, small displacement motor
 - Force multiplier used to increase range of motion
- >10¹⁰ cycles without degradation

High Pressure Testing

- Commercial testpressure vessels to 50 bar
- Higher pressures achievable
- Open MEMs
 intrinsically highly
 pressure tolerant
 (>1000 bar)

Outstanding Shock Survivability

Attributes of MEMS Devices

- Very small mass and size
- Very low power
- Functionality over broad pressure and temperature regimes
 - Vacuum to >1000 bar
 - Temperatures from 10s to >1000 K
- High impact, shock, and vibration tolerance
- Intrinsically radiation-tolerant
- Very high reliability (>10¹⁰ cycles)
- Repeatability and Testability
- Redundancy
- Relatively low cost

Applicability for Planetary Probes

Broad array of possible applications for probe measurements and other subsystems

Many Advantages for Probes

- Attributes of MEMS-based sensors/subsystems ideal for rigors of launch, space, and many planetary probes environments
- Allows integrated miniaturized instrumentation, multiple measurements, redundancy, and integrated electronics
- Miniaturized probes require much smaller power sources, mechanical structure, parachutes (may not be required), and heat shields than their fullscale siblings

Some Existing MEMS Sensors

- Pressure
- Temperature
- Acceleration
- Magnetic fields
- Wind / Flows
- Humidity
- Targeted chemical composition of gasses
- Variety of other parameters
- New applications constantly being developed
 - Driven by huge commercial investments

Many Potential Power Sources

- Normal external very low power requirements
- Micro-batteries
- MEMS-scale sources can be integrated
 - Thermal uses temperate differences
 - Vibration/motion scavenging electromechanical
 - Inductive/Piezoelectric/Capacitive
 - Solar cells
 - Generators/turbines
 - Fuel cells

Also Great for Detecting Life!!!

Conclusions

- Introduced basic principles of MEMS/MEMPPs
- Applicable to certain focused observations which can cover a broad array of planetary atmospheric and surface probes within very small packages and limited resources
- MEMPPs provide several significant advantages
 - Integrated packages of intrinsically robust instrumentation and subsystems
 - Much smaller size, mass, and power requirements
 - May enable large numbers of distributed probes